3 research outputs found

    Feasibility assessment of 5G use cases in intralogistics

    No full text
    The fifth mobile communications generation (5G) can lead to a substantial change in companies enabling the full capability of wireless industrial communication. 5G with its key features of providing Enhanced Mobile Broadband, Ultra-Reliable and Low-Latency Communication, and Massive Machine Type Communication will support the implementation of Industry 4.0 applications. In particular, the possibility to set-up Non-Public Networks provides the opportunity of 5G communication in factories and ensures sole access to the 5G infrastructure offering new opportunities for companies to implement innovative mobile applications. Currently there exist various concepts, ideas, and projects for 5G applications in an industrial environment. However, the global rollout of 5G systems is a continuous process based on various stages defined by the global initiative  3rd Generation Partnership Project that develops and specifies the 5G telecommunication standard. Accordingly, some services are currently still far from their final performance capability or not yet implemented. Additionally, research lacks in clarifying the general suitability of 5G regarding frequently mentioned 5G use cases. This paper aims to identify relevant 5G use cases for intralogistics and evaluates their technical requirements regarding their practical feasibility throughout the upcoming 5G specifications

    Measurement and comparison of data rate and time delay of end-devices in licensed sub-6 GHz 5G standalone non-public networks

    No full text
    The fifth mobile communications generation (5G) offers the deployment scenario of licensed 5G standalone non-public networks (NPNs). Standalone NPNs are locally restricted 5G networks based on 5G New Radio technology which are fully isolated from public networks. NPNs operate on their dedicated core network and offer organizations high data security and customizability for intrinsic network control. Especially in networked and cloud manufacturing, 5G is seen as a promising enabler for delay-sensitive applications such as autonomous mobile robots and robot motion control based on the tactile internet that requires wireless communication with deterministic traffic and strict cycling times. However, currently available industrial standalone NPNs do not meet the performance parameters defined in the 5G specification and standardization process. Current research lacks in performance measurements of download, upload, and time delays of 5G standalone-capable end-devices in NPNs with currently available software and hardware in industrial settings. Therefore, this paper presents initial measurements of the data rate and the round-trip delay in standalone NPNs with various end-devices to generate a first performance benchmark for 5G-based applications. In addition, five end-devices are compared to gain insights into the performance of currently available standalone-capable 5G chipsets. To validate the data rate, three locally hosted measurement methods, namely iPerf3, LibreSpeed and OpenSpeedTest, are used. Locally hosted Ping and LibreSpeed have been executed to validate the time delay. The 5G standalone NPN of Reutlingen University uses licensed frequencies between 3.7-3.8 GHz and serves as the testbed for this study
    corecore